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Abstract: NX toxins have been described as a novel group of type A trichothecenes produced by
members of the Fusarium graminearum species complex (FGSC). Differences in structure between
NX toxins and the common type B trichothecenes arise from functional variation in the trichothecene
biosynthetic enzyme Tri1 in the FGSC. The identified highly conserved changes in the Tri1 gene can
be used to develop specific PCR-based assays to identify the NX-producing strains. In this study, the
sequences of the Tri1 gene from type B trichothecene- and NX-producing strains were analyzed to
identify DNA polymorphisms between the two different kinds of trichothecene producers. Four sets
of Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) methods were
successfully developed to distinguish the common type B trichothecene producers and NX producers
within FGSC. These promising diagnostic methods can be used for high-throughput genotype
detection of Fusarium strains as a step forward for crop disease management and mycotoxin control
in agriculture. Additionally, it was found that the Tri1 gene phylogeny differs from the species
phylogeny, which is consistent with the previous studies.

Keywords: Fusarium graminearum species complex; trichothecenes; PCR-RFLP; NX toxins

Key Contribution: PCR-RFLP-based assays for accurate detection of NX producers within FGSC
were successfully developed.

1. Introduction

Members of the Fusarium graminearum species complex (FGSC) are considered the
main causative agents of Fusarium head blight (FHB) in wheat, barley, oats, and other small
cereal grain crops all over the world [1]. Significant economic losses in cereal production
have already been documented in North America [2–4], China [5–7], and other regions
of the world. Over the last two decades, investigations revealed that the FGSC consists
of at least 16 phylogenetically distinct species with varying geographical distribution,
pathogenicity, and mycotoxin profiles [8–10]. Fusarium toxins are frequent contaminants
of cereals worldwide, with trichothecenes (Type A and B) as the predominant toxins [11].
Trichothecenes inhibit eukaryotic protein synthesis, and they are responsible for emetic,
anorexic, immunosuppressive, and even death in severe cases of exposure [12–15]. Addi-
tionally, trichothecenes can act as virulence factors and facilitate tissue colonization in spe-
cific plant hosts [16–18]. Therefore, the impacts of Fusarium mycotoxins on food safety and
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human health have recently aroused considerable public concern [5]. Type B trichothecenes
have a 7-hydroxy, 8-keto-trichothecene core structure and are the most frequently occurring
mycotoxins in cereal crops worldwide [19]. Deoxynivalenol (DON) along with its acetylated
derivatives, 3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON),
as well as nivalenol (NIV) along with its acetylated derivative 4-acetylnivalenol (4ANIV),
are the most common type B trichothecenes produced by the FGSC (Figure 1). From
trichothecene production profiles, the FGSC strains are subdivided into three different
genotypes/chemotypes: (1) 3ADON genotype/chemotype, which produces DON and
3ADON; (2) 15ADON genotype/chemotype, which produces DON and 15ADON; (3) and
NIV genotype/chemotype which produces NIV and 4ANIV [20–24]. Previously, it was
known that the FGSC strains typically produce one of the three strain-specific profiles of
type B trichothecenes. However, in 2014, new isolates of the FGSC were isolated, which can
produce a novel group of type A trichothecenes called NX toxins (NX-2, NX-3, and NX-4),
as shown in Figure 1 [25–28].
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NX toxins are similar in structure to common type B trichothecenes. The NX-2 and
NX-4 toxins are the acetylated form of NX-3 at C-3 and C-15, respectively. In comparison
with the common type B trichothecenes (DON, 3ADON, and 15ADON), the novel type A
trichothecenes NX-3, NX-2, and NX-4 lack the keto group at C-8, respectively (Figure 1).
The obtained genetic analysis revealed a different Tri1 allele in the NX producers, which was
verified to be responsible for the specific oxidation at C-7 alone [26]. Hence, the structural
variations at C-8 between these two groups of trichothecenes result from the functional
diversity of trichothecene biosynthetic enzyme Tri1 [26].

In recent decades, tremendous progress has been made toward genotyping analysis of
type B trichothecene producers. Different PCR-based genotyping techniques have been
developed and extensively used for genotyping analysis of FGSC populations. All these
genotyping techniques target trichothecene biosynthesis genes, such as Tri13, Tri3, Tri12, and
Tri7, and PCR assays arose from the Tri gene polymorphisms of the Fusarium strains with
different trichothecene profiles. Molecular genetic assays allow high-throughput screening
of many field strains [21,23,29–35]. Such tools, with single or multiplex PCR, were used
in different regions in the world, including Asia [24], Europe [36], and America [37,38],
proving their efficiency and reliability in detecting the DON/NIV chemotypes and their
acetylated forms [34]. However, accurate high-throughput molecular diagnostic methods
for NX producers are yet to be developed.

Therefore, the current work aimed to (1) investigate the polymorphism of Tri1 gene
in the NX and common type B trichothecene producers; (2) develop a NX-trichothecene
genotyping method based on Tri1 gene polymorphism; and (3) discuss the potential tri-
chothecene productivities of the NX strains and infer the potential biosynthetic pathway of
the NX toxins.

2. Results
2.1. Phylogenetic Analysis of Tri1 Gene

A total of 379 Tri1 gene DNA sequences were analyzed by using multiple sequence
alignment assays and the duplicate sequences were removed. After that, 103 representative
Fusarium Tri1 gene sequences (87 from common type B trichothecene producers, 6 from NX
producers, and 10 from T-2 producers) were identified and used for further phylogenetic
relationship analysis.

The Tri1 gene phylogeny resolved type B trichothecene, NX, and T-2 strains into
three different major clades (Figure 2). However, the evolution of Tri genes does not
always correlate with the evolutionary history of Fusarium species divergence according
to the inferred Tri1 phylogeny. For instance, both F. graminearum and F. sporotrichioides
were polyphyletic in the Tri1 tree, and high divergence of NX F. graminearum strains from
the type B-trichothecene producers was observed according to the inferred topological
structure of Tri1 genes. Although the placement of the divergent NX clade was the most
obvious conflict between the Tri1 tree and the recognized species phylogeny, other conflicts
were also observed. For example, the two newly characterized monophyletic species,
F. austroamericanum and F. dactylidis, and the four early diverging species, including F. cerealis,
F. culmorum, F. lunulosporum, and F. pseudograminearum, were all nested within the FGSC.
In the current investigation, Tri1 phylogeny is not always correlated to species phylogeny,
which is consistent with the conclusion made by other studies [23,39,40].

2.2. Polymorphism of Tri1 Gene CDS Sequences

To assess the diversity of Tri1 coding sequences in NX- and type B-trichothecene-
producing strains, the polymorphism of Tri1 coding sequences (CDSs) was analyzed.
In total, 93 representative Tri1-CDSs were analyzed, excluding ten T-2 producing strains.
In general, the Tri1 gene of the 93 strains varied from 1753 to 1759 bp in total length with
four introns, and the coding region is 1539 nucleotides. After the duplicate sequences were
removed, 64 CDS sequences remained, and the identity of these coding sequences ranged
from 96.23% to 99.94%.
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Figure 2. Neighbor-joining bootstrapped phylogeny of Tri1 gene DNA sequences (N = 103) from
common type B trichothecene-producing strains, NX-, and T-2 producers of Fusarium. Phylogeny was
inferred using the Kimura 2-parameter model of nucleotide substitution with a Gamma parameter to
account for the heterogeneity rate. Fusarium species and their trichothecene toxin chemotypes are
indicated. A solid circle indicates that the strain can produce T-2, NIV, DON, or NX toxins, while an
empty circle means the strain cannot produce the corresponding metabolites.

2.3. Specific Amino Acid Sites for NX Strains

Apart from the Tri1 gene of the T-2 toxin producers, 24 representative protein se-
quences were identified using the deduced amino acid sequences of the other 366 Tri1
genes. As shown in Figure 3, the phylogeny inferred from predicted Tri1 amino acid
sequences is quite similar in topology to the Tri1 gene tree and also showed strong evidence
for the divergence of NX strains from the type B trichothecene strains. Consequently,
13 amino acid differences were identified between the Tri1 gene products of common type
B strains and NX producers (Figure 3). Previously, by comparing the analysis of amino-
acid sequences inferred based on the predicted Tri1 coding sequence of PH-1 (15ADON
producer) and 20 NX producers, 14 amino acid differences between the two kinds of tri-
chothecene producers were identified by Varga et al. [26]. All the 13 amino acids identified
in our work are entirely consistent with the results provided by Varga et al. [26]. The amino
acid identified by Varga et al. [26] at position 363 (Valine/Isoleucine) was neither specific
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to type B nor NX producers, with isoleucine only found in NX producers. In contrast,
both isoleucine and valine were identified in type B trichothecene producers. As shown in
Figure 3, the 13 different amino acids between the two groups of trichothecene producers
appeared to be distributed randomly in the Tri1 gene. According to the analysis, a conclu-
sion can be made that there are no more than 13 amino acid differences that determined
the production of NX toxin or type B trichothecenes in FGSC.
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Figure 3. (a) Phylogeny of Tri1 amino acid sequences inferred with 24 representative strains. A solid
circle indicates that the strain can produce NX, NIV, or DON toxins, while an empty circle means the
strain cannot produce the corresponding metabolites. (b) Amino acid differences between the Tri1
gene products of NX strains and common type B trichothecene producers. The amino acids specific
to NX producers are indicated above the panel; for example, “A33T” indicates that “T” is specific to
NX producers, whereas “A” is specific to type B trichothecene producers. The nucleotides and amino
acids are numbered as referred to in the sequence of NX strain 02-264.

2.4. PCR-RFLP Based Genotyping Analysis of NX Producers

To investigate the reliability of the PCR-based analysis for identifying NX-producing
FGSC strains, 30 strains collected from different areas were tested. The results showed that
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primer pairs Tri1F/R1 and Tri1F/R2 amplified a specific fragment approximately 439 bp
and 899 bp, respectively, with all the tested FGSC strains.

As depicted in Figure 4, after digestion, the PCR products amplified via NX-Tri1F/R1
from NX producers yielded two restriction fragments (198 bp and 241 bp for NheI, and
208 bp and 231 bp for BclI), but only a 439 bp fragment could be recovered from common
type B trichothecene producers. The digested PCR products from NX producers cannot be
separated well on an agarose gel after BclI digestion due to a 23 bp difference. However,
the band size is distinct from type B trichothecene producers (Figure 4). Similarly, two
restriction fragments with noticeable size differences (198 bp and 701 bp for NheI, 208 bp
and 691 bp for BclI) were produced for the PCR products amplified by the primer pair
NX-Tri1F/R2 from the NX producers, while only a single 899 bp fragment exists for the
type B trichothecene producers after digestion (Figure 4). The distinct DNA fragment
numbers and sizes from the NX and type B trichothecene-producing strains generated
via the PCR-RFLP approach demonstrated that this method can differentiate these two
trichothecene-producer groups in FGSC. With the combination of different primer pairs
and restriction endonucleases, these four diagnostic methods are proposed for identifying
NX-producing strains based on the Tir1 gene.

Toxins 2023, 15, x FOR PEER REVIEW 6 of 16 
 

 

Tri1 gene products of NX strains and common type B trichothecene producers. The amino acids 
specific to NX producers are indicated above the panel; for example, “A33T” indicates that “T” is 
specific to NX producers, whereas “A” is specific to type B trichothecene producers. The nucleotides 
and amino acids are numbered as referred to in the sequence of NX strain 02-264. 

2.4. PCR-RFLP Based Genotyping Analysis of NX Producers 
To investigate the reliability of the PCR-based analysis for identifying NX-producing 

FGSC strains, 30 strains collected from different areas were tested. The results showed 
that primer pairs Tri1F/R1 and Tri1F/R2 amplified a specific fragment approximately 439 
bp and 899 bp, respectively, with all the tested FGSC strains. 

As depicted in Figure 4, after digestion, the PCR products amplified via NX-Tri1F/R1 
from NX producers yielded two restriction fragments (198 bp and 241 bp for NheI, and 
208 bp and 231 bp for BclI), but only a 439 bp fragment could be recovered from common 
type B trichothecene producers. The digested PCR products from NX producers cannot 
be separated well on an agarose gel after BclI digestion due to a 23 bp difference. However, 
the band size is distinct from type B trichothecene producers (Figure 4). Similarly, two 
restriction fragments with noticeable size differences (198 bp and 701 bp for NheI, 208 bp 
and 691 bp for BclI) were produced for the PCR products amplified by the primer pair 
NX-Tri1F/R2 from the NX producers, while only a single 899 bp fragment exists for the 
type B trichothecene producers after digestion (Figure 4). The distinct DNA fragment 
numbers and sizes from the NX and type B trichothecene-producing strains generated via 
the PCR-RFLP approach demonstrated that this method can differentiate these two 
trichothecene-producer groups in FGSC. With the combination of different primer pairs 
and restriction endonucleases, these four diagnostic methods are proposed for identifying 
NX-producing strains based on the Tir1 gene. 

 
Figure 4. The electrophoresis of the PCR products was digested by the two endonucleases. (a) PCR 
fragments amplified with primers Tri1F/R1 and digested by BclI; (b) PCR fragments amplified with 
primers Tri1F/R1 and digested by NheI; (c) PCR fragments amplified with primers Tri1F/R2 and 
digested by BclI; (d) PCR fragments amplified with primers Tri1F/R2 and digested by NheI. Lane 
M, DNA marker; Lane 1, NX producer; Lanes 2–6, type B trichothecene-producing strains. 

2.5. Validation of the Previously Developed ApoI-Based PCR-RFLP Genotyping Analysis of  
NX Producers 

Recently, a PCR-RFLP-based diagnostic test was developed and validated for the NX-
producing strains relying on polymorphisms in the Tri1 gene [28]. Portions of the Tri1 
gene were amplified using primers Tri1F (5′-ATGGCTCTCATCACCAG-3′) and Tri1R (5′-

Figure 4. The electrophoresis of the PCR products was digested by the two endonucleases. (a) PCR
fragments amplified with primers Tri1F/R1 and digested by BclI; (b) PCR fragments amplified with
primers Tri1F/R1 and digested by NheI; (c) PCR fragments amplified with primers Tri1F/R2 and
digested by BclI; (d) PCR fragments amplified with primers Tri1F/R2 and digested by NheI. Lane M,
DNA marker; Lane 1, NX producer; Lanes 2–6, type B trichothecene-producing strains.

2.5. Validation of the Previously Developed ApoI-Based PCR-RFLP Genotyping Analysis of
NX Producers

Recently, a PCR-RFLP-based diagnostic test was developed and validated for the
NX-producing strains relying on polymorphisms in the Tri1 gene [28]. Portions of the
Tri1 gene were amplified using primers Tri1F (5′-ATGGCTCTCATCACCAG-3′) and Tri1R
(5′-CAATTCCAATCGCAGACAA-3′), and an amplicon of approximately 1740 bp was
generated from both type B and NX trichothecene-producing FGSC strains. After digestion
with restriction endonuclease ApoI, two restriction fragments of 888 bp and 851 bp were
produced for strains with 3ADON, 15ADON, and NIV chemotypes and three fragments of
407 bp, 482 bp, and 851 bp were generated for the NX strains. Kelly et al. employed this
technique to analyze FGSC strains from 19 different countries to determine the geographic
distribution of the NX strains [27].
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To assess the reliability of the Tri1-ApoI-based genotyping method developed by
Liang et al. [28], the ApoI sites of 93 Tri1 gene amplicons with primer pair Tri1F/R were
analyzed. As shown in Figure 5, the expected fragment size amplified with primer pair
Tri1F/R is about 1740 bp in length. Three ApoI enzyme site types were identified for 3ADON
producers, and four types were identified for NIV producers, while only one type was found
for 15ADON producers. Exactly the same band sizes and numbers would be obtained with
3ADON-Tri1 type 2, NIV-Tri1 type 3, and NX-Tri1 sequences. Moreover, similar products
were observed from NIV-Tri1 type 2 and NX-Tri1 strains after ApoI restriction enzyme
digestion, which probably can lead to misinterpretation during electrophoresis separation
on agarose gel. So, in part at least, the Tri1-ApoI-based assay from Liang et al. [28] cannot
effectively discriminate the NX strains from common type B trichothecene producers.

Figure 5. Diagrammatic presentations of the ApoI sites of Tri1 gene DNA sequences amplified
with primer pair Tri1F/R [26] from Fusarium strains with common type B trichothecene and NX
chemotypes. It is an in silico analysis from published sequences, and the nucleotides are numbered
as referred to in the sequence of NX strain 02-264.

2.6. Potential Trichothecene Productivities and Proposed Biosynthetic Pathways of NX Toxins

Although the biosynthesis molecular mechanisms of the NX toxins have not been fully
revealed through experimental investigation, their possible biosynthetic pathways can
be predicted based on the findings of T-2 and common type B trichothecenes discovered
so far. As reported by Chen et al. [25], NX and type B trichothecene FGSC have similar
trichothecene biosynthesis clusters. The hypothesized biosynthetic pathways of the NX
toxins corresponding to DON, 3ADON, 15ADON, and T-2 toxins are depicted in Figure 6.

As previously reviewed in the literature, genetic variation within the Tri1 gene dic-
tated the specific synthesis of common type B trichothecenes and NX toxins in the FGSC
strains [25]. Except for Tri1, the functions of other Tri gene alleles in the NX strains are
well preserved compared to common type B trichothecene producers [25]. As a result, the
majority of the genes in the biosynthesis pathway, such as Tri3, Tri4, Tri5, Tri7, Tri8, Tri11,
Tri13, and Tri101, are strictly functionally conserved across the two forms of trichothecene.
It is also known that in DON-producing strains, Tri7 and Tri13 genes are nonfunctional
due to multiple insertions and deletions within their coding regions, which is not the case
for NIV-producing strains [41–43]. During trichothecene biosynthesis, the reaction steps
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catalyzing farnesyl pyrophosphate to calonectrin are shared among Fusarium species. As
shown in Figure 6, the biosynthesis of NX-2, NX-3, and NX-4 follow a Tri5-Tri4-Tri101-Tri11-
Tri3-Tri1-Tri8 pathway, which is similar to DON and its acetylated derivatives (3ADON
and 15ADON). For the biosynthesis of NX-5 and NX-6 toxins, there are two different
pathways that both use calonectrin as a substrate: the Tri13-Tri7-Tri1-Tri8 pathway and the
Tri1-Tri13-Tri7-Tri8 pathway. However, the precise biosynthetic pathway and regulatory
mechanisms of NX toxins are unknown and worth further investigation.
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3. Discussion

Previous studies revealed that the Tri1 gene in Fusarium encodes a cytochrome P450 oxy-
genase catalyzing the hydroxylation of trichothecenes [44–46]. In F. sporotrichioides, Tri1
encodes a cytochrome P450 monooxygenase enzyme that catalyzes the hydroxylation of
trichothecenes at C-8, leading to the synthesis of type A trichothecenes, such as T-2 toxin
and HT-2 [45,47]. However, two different situations were observed in the FGSC strains.
The Tri1 encodes a cytochrome P450 oxygenase needed for hydroxylation at both C-7 and
C-8 positions, giving rise to type B trichothecenes, such as DON, NIV, and their acetylated
forms [44]. On the other hand, in the NX FGSC strains, the enzyme encoded by Tri1 re-
sponds to the hydroxylation at C-7 but not C-8 [25,26]. Consequently, allelic variants of Tri1
are accountable for the structural variations in trichothecene toxins, and Tri1 itself is a key
gene in the biosynthesis of trichothecenes.

Even with the existing different hydroxylation activities, this Tri1 gene may have the
exact evolutionary origin within the FGSC [23]. Ward et al. concluded that the evolution
of Tri genes has been maintained by balancing selection throughout the evolution of
the fungi [23]. Kelly et al. conducted phylogenetic analyses of Tri1 gene sequences to
investigate the evolutionary origins of the NX producers [27]. Their results suggested that
NX evolved more recently from a type B Tri1 allele, possibly following the diversification of
FGSC. Analysis of DNA polymorphism by Liang et al. [28] supports the hypothesis that NX-
producing strains may be resolved from one of the more frequently represented populations
reported by Gale et al. [48]. The fact that most of the NX strains characterized until now
have core Tri clusters of the 3ADON type may indicate that the appearance of the NX-
producing strains is connected to the recent expansion of the 3ADON population in North
America [26]. The accumulation of nonsynonymous substitutions specific to the NX-2 clade
indicated that the evolution of NX-2 may have been accompanied by significant changes in
selective pressure on Tri1 [27]. The main scenario behind the functional differences within
the Tri1 gene is still challenging to determine. However, these changes in the Tri1 allele
can be used to develop specific PCR assays for identifying NX-producing strains, such as
amino acid sites 252S and 254M.

Trichothecene biosynthesis genes are commonly used as markers to detect the poten-
tial ability of a fungal strain of different Fusarium species to produce trichothecenes using
specific PCR-based assays. In this study, a PCR-RFLP assay was developed based on the
mutations that occurred between position 915 and 932 (“GCT CGC GAA CTA ATC ACT”
to “GCT AGC GAA ATG ATC AAT”). These mutations in the Tri1 coding region lead to
the introduction of two new restriction enzyme cutting sites, G∧CTAGC and T∧GATCA
(∧ indicates the cutting sites), which can be recognized by restriction endonuclease NheI
and BclI, respectively. Despite the fact that just a few FGSC strains were tested using the cur-
rent PCR-RFLP diagnosis approach, the results were highly confirmed by our phylogenetic
analysis based on the 360 FGSC-Tri1 gene sequences stated above.

The Tri1 allele in NX-producing strains encodes a cytochrome P450 monooxygenase
that hydroxylates only at the C-7 position. As concluded by Varga et al., the Tri1 gene is the
only functionally different Tri gene in the biosynthesis of trichothecene compared with the
common type B trichothecene producers [26]. Therefore, a significant functional differenti-
ation occurred in the Tri1 gene within the FGSC strains, forming different trichothecene
molecules. In this study, comparing the predicted Tri1 amino acid sequences from 327 com-
mon type B trichothecene and 39 NX Fusarium strains revealed 13 fixed differences between
the two groups. Meanwhile, the functional divergence of the Tri1 allele in the NX strains
may arise from these mutations. These amino acid changes led to the development of our
molecular approaches for specific identification of NX-determining mutations as part of
pathogen monitoring efforts. Moreover, subsequent site-directed mutagenesis experiments
targeting the amino acid residues identified as specific to NX producers should result in
the determination of mutations responsible for NX biosynthesis.

Until now, two types of natural NX homologues, NX-2 and NX-3, have been identified
in rice cultures and inoculated wheat ears. Compared with 3ADON, NX-2 lacks the keto
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functional group at the C-8 position characteristic for type B trichothecenes, and NX-3 is
the deacetylated form of NX-2 at the C-3 position. In the heterologous complementary
experiment by Varga et al. [26], five independent mutants were obtained for the PH-1
(15ADON producer) background carrying the NX-version of Tri1 (IAWP48, 49, 84, 88,
and 140). As expected, four of these five PH-1-derived mutants containing the Tri1 from
the NX strain WG-9 (IAWP48, 49, 84, 140) produced NX-2. Furthermore, a new toxin,
NX-4, corresponding to 15ADON but lacking the keto functional group at the C-8 position,
was identified in rice cultures [26]. However, it should be pointed out that NX-4 toxin-
producing FGSC strains have not been identified, and this toxin is not known to occur
naturally [25]. Likewise, it is still unclear whether fungal strains that produce the analogues
of NIV and 4ANIV lacking the keto functional group at the C-8 position (described as
NX-5 and NX-6 in Figure 1, respectively) naturally exist in the FGSC. As indicated in
Figure 6, putative biosynthesis pathways for NX-4, NX-5, and NX-6 are hypothesized.
More extensive screening is needed to reveal the possible existence of such strains.

Many studies can be conducted to investigate further the new emerging Fusarium
graminearum population and its NX toxins. Firstly, determining the geographic distribution
and characterizing the spatial and temporal dynamics of the NX-producing strains are
crucial for disease management and control. For risk assessment, toxicity studies demon-
strated that the NX-3 toxin can be considered equipotent to DON in the inhibitory effect
of protein synthesis [26,49]. NX-2 shows a similar inhibitory effect on Chlamydomonas
reinhardtii growth as 3ADON, as has been verified via toxicity assays [26]. In case the
NX strains become more abundant, the NX toxins would be grouped with the common
mycotoxin contaminants in cereals, posing an additional threat to food and feed safety.
Secondly, it would be necessary to monitor whether the frequency of the NX strains is
changing. To date, the NX producers have been recovered from different cereal crops,
such as wheat, barley, and maize, indicating a wide range of plant hosts [26,27]. Notably,
a high frequency (20%) of NX strains were recently reported in air samples collected in
the USA [50]. The existence of the NX strains in airborne environmental samples will un-
doubtedly accelerate the expansion of the fungi. Due to international grain trade, there is a
possibility of NX strains being introduced to different regions around the world. Although
the overall frequency was low (2.8%), the NX-producing fungi were found during every
sampling period [49]. Therefore, disease management and plant quarantine programs are
needed to be more vigilant [23]. In this sense, the chemotype-specific PCR tests created
in the current study offer a quick, precise, and direct genetic method for differentiating
between strains that produce NX and common type B trichothecene. These tests could also
be integrated into international monitoring programs to assess cereal contamination and
characterize host-specific or biogeographic variations in chemotype distributions [23].

However, this group of new chemical substances should have unified and widely
recognized scientific names, which will be conducive to implementing scientific research
and academic exchanges. Therefore, an initiative for the naming/abbreviations of this group
of new substances should be proposed. Hence, we suggest using NX, 3ANX, 15ANX, 4ANX,
and 4HNX, similar to the naming of the common type B trichothecenes, such as DON,
3ADON, 15ADON, 4ANIV, and NIV, as described in several recent publications [51–54] or
simply using an appending digits mode (NX-2, NX-3, NX-4, NX-5, and NX-6) as was also
evident in the literature [25]. Although this is a minor issue, the solution to this problem will
promote the smooth development of academic exchanges worldwide. Furthermore, just
like the common type B trichothecene producers in FGSC, different chemotypes/genotypes
may probably evolve or be identified within the Fusarium population in the future.

4. Conclusions

Structure differences of trichothecenes resulted from trichothecene biosynthesis gene
function diversity. Tri genes are usually selected as molecular markers for trichothecene
genotyping analysis in Fusarium species. In this study, the sequences of the Tri1 gene from
NX-producing strains were compared with common type B trichothecene-producing strains
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to identify DNA polymorphisms unique to NX producers. Four sets of PCR-RFLP assays
were developed by which polymorphisms specific to the Tri1 gene of NX producers could be
rapidly identified to assess their geographical distribution and frequency. The development
of high-throughput molecular diagnostic technology for detecting NX-producing FGSC is
essential for gathering the primary data on this novel pathogen, such as its geographical
distribution, population structure proportion, host range, and other aspects.

5. Materials and Methods
5.1. Phylogenetic Analysis of Tri1 Gene

Nucleotide sequences of the Tri1 gene from different Fusarium species were retrieved
from GenBank and subjected to phylogenetic analysis. In total, 379 Tri1 gene sequences
were analyzed in this work, including 360 sequences from FGSC, 6 type B trichothecene
producers from non-FGSC Fusarium species, and 13 T-2 Fusarium producers. All the
Tri1 genes included in this study can be accessed under the GenBank accession numbers
(KX183208–KX183570, KM999941–KM999943, HQ594535–HQ594543, AY040587, GQ915524,
JXCE01000207, and GQ915521). Duplicate sequences were removed first before further
analyses via multiple sequence alignment, and detailed information for all of the remaining
representative sequences can be found in Supplementary Table S1.

Of the 360 FGSC strains, 321 are common type B trichothecene producers, and the
remaining 39 are NX producers. These sequences were selected, including FGSC NX-
producers and common type B trichothecene producers from different studies [26–28].
Following removing duplicate sequences, 88 remained, comprising 6 NX producers and
82 common type B trichothecene producers. The sources, origins, and trichothecene types
of these strains can be found in Supplementary Table S1.

In addition to FGSC, other Fusarium species could produce common type B tri-
chothecene. Therefore, the Tri1 gene sequences of the six strains with known trichothecene
chemotypes belonging to other Fusarium species were also included in this study. These
include one F. culmorum 3ADON producer (strain 25475, GenBank accession number
KX183230), one F. cerealis NIV producer (strain 25805, GenBank accession number KX183232),
one F. pseudograminearum 3ADON producer (strain 28,062, GenBank accession number
KX183238), two F. dactylidis NIV producers (strains 29,298 and 29,380, GenBank accession
number KX183257 and KX183259), and a 3ADON producer 34,461 (GenBank accession
number KX183269) with unknown/uncharacterized species. Five sequences remained after
duplicate sequences were eliminated (Supplementary Table S1).

In addition, thirteen Tri1 sequences from Fusarium species that produce T-2 toxin
were also included in the phylogenetic analyses in this work. The details of these strains
include one F. armeniacum strain (FRC-R-09335, GenBank accession number GQ915524),
one F. sambucinum strain (FRC-R-07843, GenBank accession number GQ915521), four
F. langsethiae strains (NRRL53410, 53417, 53439, Fl201059, GenBank accession numbers
HQ594538, HQ594539, HQ594543, and JXCE01000207), two F. sibiricum strains (NRRL53421
and 53427, GenBank accession numbers HQ594540 and HQ594541), and five F. sporotri-
chioides strains (NRRL26924, 29977, 29978, 3299, and 53434, GenBank accession numbers
HQ594535, HQ594536, HQ594537, AY040587, and HQ594542) [55]. Ten sequences remained
after duplicate sequences were eliminated (Supplementary Table S1).

The whole DNA sequences, coding sequences, and gene-encoded amino acid se-
quences of the Tri1 gene were submitted to multiple sequence alignment assays to reveal
their polymorphisms. Phylogenetic analyses of Tri1 were conducted under a distance
framework using the neighbor-joining algorithm and the Kimura two-parameter model as
implemented in MEGA (version 6.0) with the representative sequences. Relative support
for individual nodes was assessed via bootstrap analysis with 1000 replications. Moreover,
this study determined the potential specific amino acid sites associated with NX or type B
trichothecene production using representative amino acid sequences of Tri1.
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5.2. Primer Design

Specifically, 93 representative Tri1 gene sequences from different Fusarium species were
selected for multiple sequence alignment analysis. The species were selected based on their
ability to produce either common type B- or NX-trichothecenes, and all the strains included
have been previously characterized [27,28]. The alignment allowed designing a common
forward primer NX-Tri1F (TGGTCACTAGAATCTCAACACGT) and two reverse primers
NX-Tri1R1 (ACTCTCCTGATCTCTTCCTGCA) and NX-Tri1R2 (CACTCGTAGTTGAG-
CAAAAGGT) according to the conserved sequences of selected Tri1 gene with the aid of
Primer Premier 5 software (PREMIER Biosoft International, San Francisco, CA, USA). The
expected amplicon sizes are 439 bp and 899 bp with the primer combinations of Tri1F/R1
and Tri1F/R2, respectively, for all the type B and NX trichothecene-producing FGSC strains.

A PCR-RFLP assay was designed to target variations in the Tri1 genes that differen-
tiated common type B trichothecenes and NX producers. The DNA fragment obtained
with NX-Tri1F/R1 and NX-Tri1F/R2 from the NX strains can be cut into two fragments
with different sizes by restriction endonucleases NheI and BclI, respectively, due to several
conserved single-nucleotide mutations. However, neither restriction endonucleases can
cut the amplicons from all the common type B trichothecene strains, as no corresponding
enzyme digestion sites are observed in the nucleotide sequences.

5.3. DNA Extraction

Fusarium cultures were routinely maintained on Potato Dextrose Agar (PDA) medium
for 5 days at 25 ◦C in the dark. Genomic DNA was extracted using a CTAB-based protocol
from lyophilized mycelium and finally dissolved in 100 µL of sterile water as described [21].
In the current study, 30 FGSC strains were tested, and their known trichothecene chemo-
types and other detailed information can be found in Supplementary Table S2.

5.4. PCR Amplification and Enzyme Digestion

The polymerase chain reaction (PCR) amplifications were performed in a total volume
of a 20 µL solution consisting of 1 × T3 Super PCR Mix (Tsingke Biotechnology Co.,
Ltd., Beijing, China), 0.1 mM of forward (NX-Tri1F) and reverse primers (NX-Tri1R1 or
NX-Tri1R2), and approximately 50 ng of DNA template. A negative control without the
DNA template was used in every set of reactions. Amplification was carried out in a
T100 Thermal Cycler (Bio-Rad, Hercules, CA, USA) programmed for an initial denaturation
step at 98 ◦C for 3 min, followed by 29 cycles of 98 ◦C for 10 s, 60 ◦C for 15 s, 72 ◦C for 15 s,
and a final extension of 72 ◦C for 5 min, according to the manufacturer’s instructions. PCR
products were detected via electrophoresis, and the sizes of PCR products were estimated
through comparison with DNA standards.

The obtained Tri1 gene nucleotide fragments were digested with the restriction endonu-
clease BclI-HF or NheI-HF (New England BioLab Inc., Ipswich, MA, USA). Tri1 amplicon
digestion was performed in a final 20 µL reaction volume. Each reaction comprised 4 µL
of amplicon, 2 µL of 10 × rCutSmart buffer, 1 µL of NheI-HF (20 U/µL) or BclI-HF (20
U/µL), and 13 µL of sterile water. The enzyme digestion was performed using a Bio-Rad
T100 Thermal Cycler (Hercules, CA, USA) with the following program: 1 digestion cycle
at 37 ◦C for 2 h. As previously mentioned, the digested PCR products were separated
via electrophoresis, and different band patterns (numbers and sizes) will be observed for
NX and type B trichothecene producers. A scheme for the PCR-RFLP analysis is shown
in Figure 7.
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